3 Prognoseebenen und - methoden verstehen Sie können sowohl Prognosen als auch Einzelprojektvorhersagen und Zusammenfassungen (Produktlinien) generieren, die Produktnachfragemuster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit 12 Prognosemethoden zu berechnen. Die Prognosen beinhalten Detailinformationen auf der Positionsebene und übergeordnete Informationen über eine Zweigniederlassung oder das Unternehmen als Ganzes. 3.1 Prognoseleistungsbewertungskriterien Abhängig von der Auswahl der Verarbeitungsoptionen und von Trends und Mustern in den Verkaufsdaten sind einige Prognosemethoden besser als andere für einen gegebenen historischen Datensatz. Eine für ein Produkt geeignete Vorhersagemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie könnten feststellen, dass eine Prognosemethode, die auf einer Stufe eines Produktlebenszyklus gute Ergebnisse liefert, während des gesamten Lebenszyklus angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Beide dieser Bewertungsbewertungsmethoden erfordern historische Verkaufsdaten für einen Zeitraum, den Sie angeben. Dieser Zeitraum wird als Haltezeit oder Periode der besten Passung bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche Prognosemethode bei der nächsten Prognoseprojektion verwendet wird. Diese Empfehlung ist für jedes Produkt spezifisch und kann von einer Prognoseerzeugung zum nächsten wechseln. 3.1.1 Best Fit Das System empfiehlt die Best-Fit-Prognose, indem es die ausgewählten Prognosemethoden auf den vergangenen Kundenauftragsverlauf anwendet und die Prognosesimulation mit der aktuellen Historie vergleicht. Wenn Sie eine Best-Fit-Prognose generieren, vergleicht das System die tatsächlichen Kundenauftragsgeschichten mit Prognosen für einen bestimmten Zeitraum und berechnet, wie genau jede einzelne Prognosemethode den Umsatz voraussagte. Dann empfiehlt das System die genaueste Prognose als die beste Passform. Diese Grafik zeigt die besten Anpassungsprognosen: Abbildung 3-1 Best-Fit-Prognose Das System verwendet diese Abfolge von Schritten, um die beste Passung zu bestimmen: Verwenden Sie jede spezifizierte Methode, um eine Prognose für den Holdout-Zeitraum zu simulieren. Vergleichen Sie die tatsächlichen Verkäufe an die simulierten Prognosen für den Haltezeitraum. Berechnen Sie die POA oder die MAD, um festzustellen, welche Prognosemethode am ehesten mit dem bisherigen Verkauf übereinstimmt. Das System verwendet entweder POA oder MAD, basierend auf den von Ihnen ausgewählten Verarbeitungsoptionen. Empfehlen Sie eine Best-Fit-Prognose von der POA, die am nächsten zu 100 Prozent (über oder unter) oder die MAD, die am nächsten an Null ist. 3.2 Prognosemethoden JD Edwards EnterpriseOne Forecast Management verwendet 12 Methoden zur quantitativen Prognose und zeigt an, welche Methode für die Prognosesituation am besten geeignet ist. Dieser Abschnitt behandelt: Methode 1: Prozent über letztes Jahr. Methode 2: Berechneter Prozentsatz über letztes Jahr. Methode 3: Letztes Jahr zu diesem Jahr. Methode 4: Durchschnittlich bewegen. Methode 5: Lineare Approximation. Methode 6: Least Squares Regression. Methode 7: Zweite Grad Approximation. Methode 8: Flexible Methode. Methode 9: Gewichteter bewegter Durchschnitt. Methode 10: Lineare Glättung. Methode 11: Exponentielle Glättung. Methode 12: Exponentielle Glättung mit Trend und Saisonalität. Geben Sie die Methode an, die Sie in den Verarbeitungsoptionen für das Programm für die Prognoseerzeugung verwenden möchten (R34650). Die meisten dieser Methoden bieten eine begrenzte Kontrolle. Zum Beispiel kann das Gewicht der letzten historischen Daten oder der Datumsbereich der historischen Daten, die in den Berechnungen verwendet werden, von Ihnen angegeben werden. Die Beispiele in der Anleitung geben die Berechnungsmethode für jede der verfügbaren Prognosemethoden an, wobei ein identischer Satz historischer Daten vorliegt. Die Methodenbeispiele im Leitfaden verwenden Teil oder alle diese Datensätze, die historische Daten aus den letzten zwei Jahren sind. Die Prognoseprojektion geht ins nächste Jahr. Diese Handelsgeschichte Daten sind stabil mit kleinen saisonalen Zunahmen im Juli und Dezember. Dieses Muster ist charakteristisch für ein reifes Produkt, das sich der Obsoleszenz nähern könnte. 3.2.1 Methode 1: Prozent über letztes Jahr Diese Methode verwendet die Percent Over Last Year Formel, um jeden Prognosezeitraum um den angegebenen Prozentsatz zu erhöhen oder zu verringern. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden für die beste Passform plus ein Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um die Nachfrage nach saisonalen Gegenständen mit Wachstum oder Rückgang zu prognostizieren. 3.2.1.1 Beispiel: Methode 1: Prozent über letztes Jahr Die Percent Over Last Year Formel vervielfacht die Verkaufsdaten des Vorjahres um einen Faktor, den Sie angeben und dann Projekte, die sich im nächsten Jahr ergeben. Diese Methode könnte bei der Budgetierung nützlich sein, um den Einfluss einer bestimmten Wachstumsrate zu simulieren oder wenn die Verkaufsgeschichte eine signifikante saisonale Komponente aufweist. Prognosevorgaben: Multiplikationsfaktor Geben Sie z. B. 110 in der Verarbeitungsoption an, um die Vorjahresgeschäftsdaten um 10 Prozent zu erhöhen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Anpassung) erforderlich sind, die Sie angeben. Diese Tabelle wird in der Prognoseberechnung verwendet: Februar-Prognose entspricht 117 mal 1.1 128.7 gerundet auf 129. März-Prognose entspricht 115 mal 1.1 126.5 gerundet auf 127. 3.2.2 Methode 2: Berechneter Prozentsatz über letztes Jahr Diese Methode verwendet den berechneten Percent Over Last-Jahr-Formel, um die vergangenen Verkäufe von bestimmten Perioden zu Verkäufen aus den gleichen Perioden des Vorjahres zu vergleichen. Das System bestimmt eine prozentuale Erhöhung oder Abnahme und multipliziert dann jede Periode mit dem Prozentsatz, um die Prognose zu ermitteln. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden des Kundenauftragsverlaufs plus ein Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um kurzfristige Nachfrage nach saisonalen Gegenständen mit Wachstum oder Rückgang zu prognostizieren. 3.2.2.1 Beispiel: Methode 2: Berechneter Prozentsatz über letztes Jahr Die berechnete Periode über dem letzten Jahr vervielfacht die Umsatzdaten des Vorjahres um einen Faktor, der vom System berechnet wird, und dann projiziert sie für das nächste Jahr. Diese Methode könnte nützlich sein, um den Einfluss der Verlängerung der jüngsten Wachstumsrate für ein Produkt in das nächste Jahr zu projizieren, während ein saisonales Muster, das in der Verkaufsgeschichte vorhanden ist, bewahrt wird. Prognose-Spezifikationen: Umfang der Verkaufsgeschichte bei der Berechnung der Wachstumsrate zu verwenden. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die Verkaufsgeschichte für die letzten vier Perioden zu den gleichen vier Perioden des Vorjahres zu vergleichen. Verwenden Sie das berechnete Verhältnis, um die Projektion für das nächste Jahr zu machen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet, vorausgesetzt, n 4: Februar-Prognose entspricht 117 mal 0,9766 114,26 gerundet auf 114. März-Prognose entspricht 115 mal 0,9766 112,31 gerundet auf 112. 3.2.3 Methode 3: Letztes Jahr zu diesem Jahr Diese Methode verwendet Im vergangenen Jahr Umsatz für die nächsten Jahre prognostiziert. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden, die am besten passen, plus ein Jahr des Verkaufsauftragsverlaufs. Diese Methode ist sinnvoll, um die Nachfrage nach reifen Produkten mit Niveau Nachfrage oder saisonale Nachfrage ohne Trend zu prognostizieren. 3.2.3.1 Beispiel: Methode 3: Letztes Jahr zu diesem Jahr Das letzte Jahr zu diesem Jahr verwandelt die Verkaufsdaten vom Vorjahr auf das nächste Jahr. Diese Methode könnte bei der Budgetierung nützlich sein, um den Umsatz auf dem aktuellen Niveau zu simulieren. Das Produkt ist reif und hat keinen Trend auf lange Sicht, aber es könnte ein erhebliches saisonales Nachfragemuster bestehen. Vorhersage Spezifikationen: Keine. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist Geschichte in der Prognoseberechnung verwendet: Januar Prognose entspricht Januar des vergangenen Jahres mit einem Prognosewert von 128. Februar Prognose entspricht Februar des vergangenen Jahres mit einem Prognosewert von 117. März Prognose entspricht März des letzten Jahres mit einem Prognosewert von 115. 3.2.4 Methode 4: Moving Average Diese Methode verwendet die Moving Average-Formel, um die angegebene Anzahl von Perioden zu berechnen, um den nächsten Zeitraum zu projizieren. Sie sollten es oft (monatlich oder mindestens vierteljährlich) neu berechnen, um dem sich ändernden Nachfrageniveau zu entsprechen. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden, die am besten geeignet sind, sowie die Anzahl der Perioden des Kundenauftragsverlaufs. Diese Methode ist sinnvoll, um die Nachfrage nach ausgereiften Produkten ohne Trend zu prognostizieren. 3.2.4.1 Beispiel: Methode 4: Moving Average Moving Average (MA) ist eine beliebte Methode zur Mittelung der Ergebnisse der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu bestimmen. Die MA-Prognosemethode bleibt hinter den Trends zurück. Prognose-Bias und systematische Fehler treten auf, wenn die Produktverkäufe Geschichte starke Tendenz oder saisonale Muster zeigt. Diese Methode arbeitet besser für Kurzstreckenprognosen von reifen Produkten als für Produkte, die sich in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus befinden. Prognosevorgaben: n entspricht der Anzahl der Perioden der Verkaufshistorie, die bei der Prognoseberechnung verwendet werden soll. Geben Sie z. B. n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Ein großer Wert für n (z. B. 12) erfordert mehr Verkaufsgeschichte. Es führt zu einer stabilen Prognose, ist aber langsam zu erkennen Verschiebungen in der Ebene des Umsatzes. Umgekehrt ist ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen in der Verkaufsstufe zu reagieren, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung erforderlich sind (Perioden der besten Passform). Diese Tabelle wird in der Prognoseberechnung verwendet: Februar-Prognose entspricht (114 119 137 125) 4 123,75 gerundet auf 124. März-Prognose entspricht (119 137 125 124) 4 126,25 gerundet auf 126. 3.2.5 Methode 5: Lineare Approximation Diese Methode Verwendet die lineare Approximation-Formel, um einen Trend aus der Anzahl der Perioden des Kundenauftragsverlaufs zu berechnen und diesen Trend auf die Prognose zu projizieren. Sie sollten den Trend monatlich neu berechnen, um Veränderungen in den Trends zu erkennen. Diese Methode erfordert die Anzahl der besagten Perioden und die Anzahl der vorgegebenen Perioden des Kundenauftragsverlaufs. Diese Methode ist nützlich, um die Nachfrage nach neuen Produkten oder Produkten mit gleichbleibenden positiven oder negativen Trends zu prognostizieren, die nicht auf saisonale Schwankungen zurückzuführen sind. 3.2.5.1 Beispiel: Methode 5: Lineare Approximation Lineare Approximation berechnet einen Trend, der auf zwei Erfolgsdaten-Datenpunkten basiert. Diese beiden Punkte definieren eine gerade Trendlinie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, da Langstreckenprognosen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Prognosevorgaben: n entspricht dem Datenpunkt im Verkaufsverlauf, der mit dem aktuellsten Datenpunkt verglichen wird, um einen Trend zu identifizieren. Geben Sie z. B. n 4 an, um die Differenz zwischen Dezember (aktuellste Daten) und August (vier Perioden vor Dezember) als Grundlage für die Berechnung des Trends zu verwenden. Mindestens erforderliche Verkaufsgeschichte: n plus 1 plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (Perioden der besten Anpassung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (1 mal 2) 139. Februar-Prognose Dezember des vergangenen Jahres 1 (Trend), was 137 (2 mal 2) 141 entspricht. März-Prognose Dezember des vergangenen Jahres 1 (Trend), was 137 entspricht (3 mal 2) 143. 3.2.6 Methode 6: Least Squares Regression Die Least Squares Regression (LSR) Methode ergibt eine Gleichung, die eine geradlinige Beziehung zwischen den historischen Verkaufsdaten beschreibt Und der Ablauf der Zeit. LSR passt eine Zeile in den ausgewählten Datenbereich, so dass die Summe der Quadrate der Unterschiede zwischen den tatsächlichen Verkaufsdatenpunkten und der Regressionsgeraden minimiert wird. Die Prognose ist eine Projektion dieser Geraden in die Zukunft. Diese Methode erfordert die Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der Perioden am besten angepasst wird, sowie die angegebene Anzahl historischer Datenperioden. Die Mindestanforderung ist zwei historische Datenpunkte. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn ein linearer Trend in den Daten liegt. 3.2.6.1 Beispiel: Methode 6: Least Squares Regression Lineare Regression oder Least Squares Regression (LSR) ist die beliebteste Methode zur Identifizierung eines linearen Trends in historischen Verkaufsdaten. Die Methode berechnet die Werte für a und b, die in der Formel verwendet werden sollen: Diese Gleichung beschreibt eine Gerade, wobei Y für Verkäufe steht und X die Zeit darstellt. Lineare Regression ist langsam zu erkennen, Wendepunkte und Schritt-Funktions-Verschiebungen in der Nachfrage. Lineare Regression passt zu einer geraden Linie zu den Daten, auch wenn die Daten saisonal oder besser durch eine Kurve beschrieben werden. Wenn die Verkaufsverlaufsdaten einer Kurve folgen oder ein starkes saisonales Muster aufweisen, treten prognostizierte Vorurteile und systematische Fehler auf. Prognosevorgaben: n entspricht den Perioden der Verkaufsgeschichte, die bei der Berechnung der Werte für a und b verwendet werden. Geben Sie z. B. n 4 an, um den Verlauf von September bis Dezember als Grundlage für die Berechnungen zu verwenden. Wenn Daten verfügbar sind, würde gewöhnlich ein größeres n (wie z. B. n 24) verwendet werden. LSR definiert eine Zeile für so wenig wie zwei Datenpunkte. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Mindestens erforderliche Verkaufsgeschichte: n Perioden plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: März-Prognose entspricht 119,5 (7 mal 2,3) 135,6 gerundet auf 136. 3.2.7 Methode 7: Zweite Grad-Approximation Um die Prognose zu projizieren, verwendet diese Methode die Formel für die zweite Grad-Approximation, um eine Kurve zu zeichnen Das basiert auf der Anzahl der Perioden der Verkaufsgeschichte. Diese Methode erfordert die Anzahl der Perioden am besten passt plus die Anzahl der Perioden der Kundenauftrag Geschichte mal drei. Diese Methode ist nicht sinnvoll, um die Nachfrage nach einem längerfristigen Zeitraum zu prognostizieren. 3.2.7.1 Beispiel: Methode 7: Zweite Grad Approximation Lineare Regression bestimmt Werte für a und b in der Prognoseformel Y a b X mit dem Ziel, eine Gerade an die Verkaufsverlaufdaten anzupassen. Die zweite Grad-Approximation ist ähnlich, aber diese Methode bestimmt die Werte für a, b und c in dieser Prognoseformel: Y a b X c X 2 Ziel dieser Methode ist es, eine Kurve auf die Verkaufsverlaufsdaten zu setzen. Diese Methode ist nützlich, wenn sich ein Produkt im Übergang zwischen Lebenszyklusstadien befindet. Zum Beispiel, wenn ein neues Produkt von der Einführung in Wachstumsstadien bewegt, könnte sich der Umsatztrend beschleunigen. Wegen des Termes zweiter Ordnung kann sich die Prognose schnell an die Unendlichkeit wenden oder auf Null fallen (je nachdem, ob der Koeffizient c positiv oder negativ ist). Diese Methode ist nur kurzfristig sinnvoll. Prognose Spezifikationen: die Formel finden, a, b und c, um eine Kurve auf genau drei Punkte passen. Sie geben n an, die Anzahl der Zeitperioden der Daten, die sich in jedem der drei Punkte ansammeln. In diesem Beispiel n 3. Die tatsächlichen Verkaufsdaten für April bis Juni werden in den ersten Punkt Q1 zusammengefasst. Juli bis September werden zusammen addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve ist an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 mal n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (Perioden der besten Anpassung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun), was 125 122 137 384 Q2 (Jul) (Aug) (Sep) entspricht, was 140 129 entspricht 131 400 Q3 (Okt) (Nov) (Dez), was 114 119 137 370 entspricht Der nächste Schritt beinhaltet die Berechnung der drei Koeffizienten a, b und c, die in der Prognoseformel Y ab X c X 2 verwendet werden sollen. Q1, Q2 und Q3 werden auf der Grafik dargestellt, wobei die Zeit auf der horizontalen Achse aufgetragen ist. Q1 repräsentiert den gesamten historischen Umsatz für April, Mai und Juni und ist auf X 1 Q2 entspricht Juli bis September Q3 entspricht Oktober bis Dezember und Q4 steht für Januar bis März. Diese Grafik veranschaulicht das Plotten von Q1, Q2, Q3 und Q4 für die Näherung des zweiten Grades: Abbildung 3-2 Plotten Q1, Q2, Q3 und Q4 für die zweite Gradnäherung Drei Gleichungen beschreiben die drei Punkte auf dem Graphen: (1) Q1 A cx 2 wobei X 1 (Q1 abc) (2) Q2 a bX cX 2 wobei X 2 (Q2 a 2b 4c) (3) Q3 a bX cX 2 wobei X 3 (Q3 a 3b 9c) die drei Gleichungen gleichzeitig lösen Um die Gleichung 1 (1) aus Gleichung 2 (2) zu subtrahieren und für b zu lösen: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersetzen Sie diese Gleichung für B in Gleichung (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Schließlich ersetzen diese Gleichungen für a und b in Gleichung (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 Das zweite Grad Approximation-Verfahren berechnet a, b und c wie folgt: a Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 mal ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 ( 370 ndash 400) (384 ndash 400) 2 ndash23 Dies ist eine Berechnung der Annäherungsprognose des zweiten Grades: Y a bX cX 2 322 85X (ndash23) (X 2) Wenn X 4, Q4 322 340 ndash 368 294. Die Prognose entspricht 294 3 98 pro Zeitraum. Wenn X 5, Q5 322 425 ndash 575 172. Die Prognose entspricht 172 3 58,33 abgerundet auf 57 pro Periode. Wenn X 6, Q6 322 510 ndash 828 4. Die Prognose entspricht 4 3 1,33 gerundet auf 1 pro Periode. Dies ist die Prognose für das nächste Jahr, letztes Jahr zu diesem Jahr: 3.2.8 Methode 8: Flexible Methode Diese Methode ermöglicht es Ihnen, die bestmögliche Anzahl von Perioden des Kundenauftragsverlaufs auszuwählen, der n Monate vor dem voraussichtlichen Startdatum beginnt Eine prozentuale Erhöhung oder Verringerung des Multiplikationsfaktors anwenden, um die Prognose zu ändern. Diese Methode ähnelt Methode 1, Prozent über letztes Jahr, außer dass Sie die Anzahl der Perioden angeben können, die Sie als Basis verwenden. Abhängig davon, was Sie als n wählen, benötigt diese Methode Perioden, die am besten passen, plus die Anzahl der angegebenen Perioden der Verkaufsdaten. Diese Methode ist nützlich, um die Nachfrage nach einem geplanten Trend zu prognostizieren. 3.2.8.1 Beispiel: Methode 8: Flexible Methode Die Flexible Methode (Prozent über n Monate vorher) ähnelt Methode 1, Prozent über letztes Jahr. Beide Methoden multiplizieren die Verkaufsdaten aus einer früheren Zeitspanne mit einem von Ihnen angegebenen Faktor und projizieren dann das Ergebnis in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum im Vorjahr. Sie können auch die Flexible Methode verwenden, um einen Zeitraum anzugeben, der nicht der gleiche Zeitraum im letzten Jahr ist, als Grundlage für die Berechnungen zu verwenden. Multiplikationsfaktor Geben Sie z. B. 110 in der Verarbeitungsoption an, um die vorherigen Verkaufsgeschichtsdaten um 10 Prozent zu erhöhen. Basisperiode Zum Beispiel, n 4 bewirkt, dass die erste Prognose auf Umsatzdaten im September des vergangenen Jahres basiert. Mindestens erforderliche Verkaufsgeschichte: Die Anzahl der Perioden zurück zur Basisperiode plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung erforderlich sind (Perioden der besten Anpassung). Diese Tabelle ist Geschichte, die in der Prognoseberechnung verwendet wird: 3.2.9 Methode 9: Gewichteter beweglicher Durchschnitt Die gewichtete bewegliche durchschnittliche Formel ist ähnlich wie Methode 4, Moving Average Formel, weil es im Durchschnitt der vorherigen Monatsverkäufe geschieht, um die nächste Monatsverkaufsgeschichte zu projizieren. Mit dieser Formel können Sie jedoch Gewichte für jede der Vorperioden zuordnen. Diese Methode erfordert die Anzahl der gewählten Perioden plus die Anzahl der Perioden am besten passende Daten. Ähnlich wie Moving Average ist diese Methode hinter den Nachfragetrends zurückgegangen, so dass diese Methode nicht für Produkte mit starken Trends oder Saisonalität empfohlen wird. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit einer Nachfrage zu veranschlagen, die relativ gleich ist. 3.2.9.1 Beispiel: Methode 9: Gewichteter bewegter Durchschnitt Die Methode der gewichteten beweglichen Mittelwerte (WMA) ähnelt Methode 4, Moving Average (MA). Allerdings können Sie bei der Verwendung von WMA ungleiche Gewichte den historischen Daten zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Neuere Daten werden in der Regel ein größeres Gewicht als ältere Daten zugewiesen, so dass WMA eher auf Verschiebungen in der Ebene des Umsatzes reagiert. Allerdings treten prognostizierte Vorurteile und systematische Fehler auf, wenn die Produktverkäufe Geschichte starke Tendenzen oder saisonale Muster aufweist. Diese Methode eignet sich besser für kurzfristige Prognosen von reifen Produkten als für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. Die Anzahl der Perioden der Verkaufsgeschichte (n), die in der Prognoseberechnung verwendet werden soll. Geben Sie z. B. n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Ein großer Wert für n (z. B. 12) erfordert mehr Verkaufsgeschichte. Ein solcher Wert führt zu einer stabilen Prognose, aber es ist langsam, Verschiebungen im Umsatz zu erkennen. Umgekehrt reagiert ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen im Umsatz, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Die Gesamtzahl der Perioden für die Verarbeitungsoption rdquo14 - Perioden zu includerdquo sollte 12 Monate nicht überschreiten. Das Gewicht, das jeder der historischen Datenperioden zugeordnet ist. Die zugewiesene Gewichte müssen 1,00 betragen. Zum Beispiel, wenn n 4, Gewichte von 0,50, 0,25, 0,15 und 0,10 mit den letzten Daten, die das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose entspricht (131 mal 0,10) (114 mal 0,15) (119 mal 0,25) (137 mal 0,50) (0,10 0,15 0,25 0,50) 128,45 gerundet auf 128. Februar-Prognose entspricht (114 mal 0,10) (137 mal 0,25) (137 mal 0,25) (137 mal 0,25) (128 mal 0,50) 1 127,5 gerundet auf 128. März-Vorhersage gleich (119 mal 0,10) (137 mal 0,15) (128 mal 0,25) (128 mal 0,50) 1 128,45 gerundet 128. 3.2.10 Methode 10: Lineare Glättung Diese Methode berechnet einen gewichteten Durchschnitt der vergangenen Verkaufsdaten. Bei der Berechnung verwendet diese Methode die Anzahl der Perioden des Kundenauftragsverlaufs (von 1 bis 12), die in der Verarbeitungsoption angegeben ist. Das System nutzt eine mathematische Progression, um Daten im Bereich vom ersten (geringsten Gewicht) bis zum endgültigen (größten Gewicht) zu wiegen. Dann projiziert das System diese Informationen zu jeder Periode in der Prognose. Diese Methode erfordert für die Anzahl der Perioden, die in der Verarbeitungsoption angegeben sind, die Monate am besten. 3.2.10.1 Beispiel: Methode 10: Lineare Glättung Diese Methode ähnelt Methode 9, WMA. Jedoch wird anstelle der willkürlichen Zuordnung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichte zuzuordnen, die linear abfallen und auf 1,00 summieren. Die Methode berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Wie alle linearen gleitenden durchschnittlichen Prognosetechniken, Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte zeigt starke Trend oder saisonale Muster. Diese Methode eignet sich besser für kurzfristige Prognosen von reifen Produkten als für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. N entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoseberechnung verwendet werden soll. Beispielsweise ist n gleich 4 in der Verarbeitungsoption, um die letzten vier Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Das System ordnet die Gewichte automatisch den historischen Daten zu, die linear abfallen und auf 1,00 summieren. Wenn z. B. n gleich 4 ist, weist das System Gewichte von 0,4, 0,3, 0,2 und 0,1 zu, wobei die letzten Daten das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: 3.2.11 Methode 11: Exponentielle Glättung Diese Methode berechnet einen geglätteten Durchschnitt, der zu einer Schätzung wird, die das allgemeine Umsatzniveau über die ausgewählten historischen Datenperioden darstellt. Diese Methode erfordert die Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der Perioden am besten angepasst wird, sowie die Anzahl der angegebenen historischen Datenperioden. Die Mindestanforderung ist zwei historische Datenperioden. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn kein linearer Trend in den Daten liegt. 3.2.11.1 Beispiel: Methode 11: Exponentielle Glättung Diese Methode ähnelt Methode 10, Lineare Glättung. Bei der linearen Glättung weist das System Gewichte auf, die linear den historischen Daten abweichen. In der exponentiellen Glättung weist das System Gewichte auf, die exponentiell abklingen. Die Gleichung für die Exponential-Glättungsvorhersage lautet: Prognose-Alpha (vorherige Ist-Verkäufe) (1 ndashalpha) (vorherige Prognose) Die Prognose ist ein gewichteter Durchschnitt des tatsächlichen Umsatzes aus der Vorperiode und der Prognose aus der Vorperiode. Alpha ist das Gewicht, das auf den tatsächlichen Umsatz für die vorherige Periode angewendet wird. (1 ndash alpha) ist das Gewicht, das auf die Prognose für die vorherige Periode angewendet wird. Werte für Alpha-Bereich von 0 bis 1 und fallen normalerweise zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00 (alpha (1 ndash alpha) 1). Sie sollten einen Wert für die Glättungskonstante, alpha, zuweisen. Wenn Sie keinen Wert für die Glättungskonstante zuordnen, berechnet das System einen angenommenen Wert, der auf der Anzahl der Perioden des Verkaufsverlaufs basiert, die in der Verarbeitungsoption angegeben ist. Alpha entspricht der Glättungskonstante, die verwendet wird, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größe des Umsatzes zu berechnen. Werte für Alpha-Bereich von 0 bis 1. n entspricht dem Bereich der Verkaufsverlaufdaten, die in die Berechnungen enthalten sind. Im Allgemeinen reicht ein Jahr der Verkaufsgeschichte Daten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Exponentielle Glättung kann eine Prognose erzeugen, die auf so wenig wie einem historischen Datenpunkt basiert. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: 3.2.12 Methode 12: Exponentielle Glättung mit Trend und Saisonalität Diese Methode berechnet einen Trend, einen saisonalen Index und einen exponentiell geglätteten Durchschnitt aus dem Kundenauftragsverlauf. Das System wendet dann eine Projektion des Trends auf die Prognose an und passt sich dem Saisonindex an. Diese Methode erfordert die Anzahl der Perioden am besten fit plus zwei Jahre der Verkaufsdaten, und ist nützlich für Elemente, die sowohl Trend und Saisonalität in der Prognose haben. Sie können den Alpha - und Beta-Faktor eingeben oder das System berechnen. Alpha - und Beta-Faktoren sind die Glättungskonstante, die das System verwendet, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größe des Umsatzes (Alpha) und die Trendkomponente der Prognose (Beta) zu berechnen. 3.2.12.1 Beispiel: Methode 12: Exponentielle Glättung mit Trend und Saisonalität Diese Methode ähnelt Methode 11, Exponential-Glättung, indem ein geglätteter Durchschnitt berechnet wird. Allerdings enthält das Verfahren 12 auch einen Begriff in der Prognosegleichung, um einen geglätteten Trend zu berechnen. Die Prognose besteht aus einem geglätteten Durchschnitt, der für einen linearen Trend angepasst ist. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch für Saisonalität angepasst. Alpha entspricht der Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für das allgemeine Niveau oder die Größe des Umsatzes verwendet wird. Werte für Alpha-Bereich von 0 bis 1. Beta entspricht der Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose angewendet wird. Alpha und Beta sind unabhängig voneinander. Sie müssen nicht auf 1,0 summieren. Mindestens erforderliche Verkaufsgeschichte: Ein Jahr plus die Anzahl der Zeiträume, die erforderlich sind, um die Prognoseleistung zu bewerten (Perioden der besten Passform). Wenn zwei oder mehr Jahre historische Daten vorliegen, verwendet das System zwei Jahre Daten in den Berechnungen. Methode 12 verwendet zwei exponentielle Glättungsgleichungen und einen einfachen Durchschnitt, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Index zu berechnen. Ein exponentiell geglätteter Durchschnitt: Ein exponentiell geglätteter Trend: Ein einfacher durchschnittlicher saisonaler Index: Abbildung 3-3 Einfacher durchschnittlicher Saisonindex Die Prognose wird dann unter Verwendung der Ergebnisse der drei Gleichungen berechnet: L ist die Länge der Saisonalität (L entspricht 12 Monaten oder 52 Wochen). T ist die aktuelle Zeitspanne. M ist die Anzahl der Zeiträume in die Zukunft der Prognose. S ist der multiplikative saisonale Anpassungsfaktor, der auf den entsprechenden Zeitraum indiziert ist. Diese Tabelle enthält die in der Prognoseberechnung verwendete Geschichte: Dieser Abschnitt enthält einen Überblick über die Prognoseauswertungen und erörtert: Sie können Prognosemethoden auswählen, um bis zu 12 Prognosen für jedes Produkt zu generieren. Jede Prognosemethode könnte eine etwas andere Projektion erzeugen. Wenn Tausende von Produkten prognostiziert werden, ist eine subjektive Entscheidung unpraktisch, welche Prognose in den Plänen für jedes Produkt zu verwenden ist. Das System wertet automatisch die Leistung für jede Prognosemethode aus, die Sie auswählen und für jedes Produkt, das Sie prognostizieren. Sie können zwischen zwei Leistungskriterien wählen: MAD und POA. MAD ist ein Maß für Prognosefehler. POA ist ein Maß für die Prognose-Bias. Beide dieser Leistungsbewertungstechniken erfordern für einen von Ihnen angegebenen Zeitraum die tatsächlichen Verkaufsgeschichte. Die Zeit der letzten Geschichte, die für die Auswertung verwendet wird, wird als Haltezeit oder Periode der besten Passung bezeichnet. Um die Leistung einer Prognosemethode zu messen, verwendet das System die Prognoseformeln, um eine Prognose für die historische Holdout-Periode zu simulieren. Macht einen Vergleich zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für den Haltezeitraum. Wenn Sie mehrere Prognosemethoden auswählen, tritt dieser Vorgang für jede Methode auf. Mehrere Prognosen werden für die Halteperiode berechnet und im Vergleich zur bekannten Verkaufsgeschichte für denselben Zeitraum verglichen. Die Prognosemethode, die die bestmögliche Übereinstimmung zwischen der Prognose und den tatsächlichen Verkäufen während des Haltezeitraums erzeugt, wird für die Verwendung in den Plänen empfohlen. Diese Empfehlung ist für jedes Produkt spezifisch und kann sich jedes Mal ändern, wenn Sie eine Prognose generieren. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. op chapter 12 Demand Planning: Forecasting and Demand Management The primary difference between demand management and demand forecasting is Forecasting is only possible when quantitative data are available. A firm cannot execute both approaches simultaneously. Demand management is proactive, while forecasting attempts to predict. One approach deals with uncertainty, while the other deals with known demand. Demand management is proactive, while forecasting attempts to predict. Demand management proactively attempts to influence demand, while forecasting simply tries to predict demand. strategic demand planning would best be utilized: To determine plans for hiring or laying off employees. To determine plans for employee overtime. To decide whether or not to close a manufacturing plant. To direct day-to-day operations in a manufacturing plant. To decide whether or not to close a manufacturing plant. Strategic demand planning is necessary for long-term decisions such as building or closing a plant. The others described are shorter-term decisions. The demand for housing is characterized by a regular pattern of increasing to a peak, then falling. When the demand reaches a low point, it then repeats the pattern. This pattern usually takes place over a three - to five-year period. This is an example of which type of demand pattern Autocorrelation Step change Trend Seasonality and cycles Seasonality and cycles Seasonality and cycles are regular patterns of repeating highs and lows, as described in this example Convex Computer Company makes many different forecasts. Which of the following forecasts is probably the least accurate Total number of desktops to be sold next year. Total number of laptops to be sold next month. Total number of computers (laptops and desktops) to be sold next month. Total number of laptops with 2 gigabyte RAM, 80 gigabyte hard drive, and 16 x DVD drive to be sold next year. Total number of laptops with 2 gigabyte RAM, 80 gigabyte hard drive, and 16 x DVD drive to be sold next year. The more detailed the forecast, the less accurate it is likely to be. D is the most detailed. A company has the following information regarding its forecast performance in the past three periods. What is the mean absolute deviation (MAD) 200 Summing the absolute values of the errors and determining the average results in (300 200 100)3 200. Move from build-to-stock to assemble or make-to-order operations. Influence the timing of demand. All of these. Move from build-to-stock to assemble or make-to-order operations. Postponable products obtain final form after customer demand is actually known. Some forecasts are still necessary (for components), and the timing of demand is not changed. In recent years some companies have begun to work closely with their customers andor suppliers by sharing information to develop demand plans and execute those plans. The procedure they are following is known as: Collaborative planning, forecasting, and replenishment. Conjoint analysis and forecasting. Joint planning of demand forecasts. Coordinated fore planning of requirements. Collaborative planning, forecasting, and replenishment. Collaborative planning, forecasting, and replenishment is a process for sharing information and plans with supply chain partners. Assume that the forecast for the last period is FITt 200 units, and recent experience suggests a likely sales increase of 10 units each period. Actual sales for the last period reached 230 units. Assuming a smoothing coefficient of 0.20 and a trend smoothing coefficient of 0.10, what is the BASE forecast for the next period Ft1 FITt (dt - FITt) 200 0.20 (230 - 200) 206 Zanda Corp. has been testing the performance of two different forecasting models to see which it should adopt for use. It wants to choose the model that has the smaller standard deviation of the forecast errors. Zanda should compare which of the following to make its choice MAPE of the two models MFE of the two models RMSE of the two models MAD of the two models RMSE of the two models RMSE provides a good approximation of the standard deviations of a models forecast errors. The tracking signal will suggest to a manager that Demand for an item is changing. A forecast modes parameters may need adjustment. There is seasonality in demand. All of these A forecast modes parameters may need adjustment. Tracking signal suggests to a manager that model parameters may need adjustment. A forecasting system that changes the value of the alpha parameter in response to the level of forecast error is known as: An adaptive model. A trend enhanced exponential smoothing model. A tracking signal. A time series model. A causal regression. An adaptive model Adaptive forecasting automatically adjusts smoothing coefficients in an exponential smoothing model in response to a tracking signal. Long-termstrategic demand planning is typically done using what units Sales at a given location Total business unit sales Total product item sales Total product family sales Total business unit sales Strategic demand planning supports total business level decisions. What is the relationship between demand management and demand forecasting The two planning activities are managed independently. Demand management plans are usually an input to demand forecasting. Demand management is done by operations managers, while demand forecasting is done by marketing managers. Both B and C are correct. Demand management plans are usually an input to demand forecasting. Demand management plans such as pricing and promotion are inputs needed to forecast demand. Which of the following factors should be considered when one designs a forecasting process Time horizon for planning. Level of detail for planning. Availability of data. All of these Forecasting systems should be tailored to the users needs. A Forecast Calculation Examples A.1 Forecast Calculation Methods Twelve methods of calculating forecasts are available. Most of these methods provide for limited user control. For example, the weight placed on recent historical data or the date range of historical data used in the calculations might be specified. The following examples show the calculation procedure for each of the available forecasting methods, given an identical set of historical data. The following examples use the same 2004 and 2005 sales data to produce a 2006 sales forecast. In addition to the forecast calculation, each example includes a simulated 2005 forecast for a three month holdout period (processing option 19 3) which is then used for percent of accuracy and mean absolute deviation calculations (actual sales compared to simulated forecast). A.2 Forecast Performance Evaluation Criteria Depending on your selection of processing options and on the trends and patterns existing in the sales data, some forecasting methods will perform better than others for a given historical data set. A forecasting method that is appropriate for one product may not be appropriate for another product. It is also unlikely that a forecasting method that provides good results at one stage of a products life cycle will remain appropriate throughout the entire life cycle. You can choose between two methods to evaluate the current performance of the forecasting methods. These are Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). Both of these performance evaluation methods require historical sales data for a user specified period of time. This period of time is called a holdout period or periods best fit (PBF). The data in this period is used as the basis for recommending which of the forecasting methods to use in making the next forecast projection. This recommendation is specific to each product, and may change from one forecast generation to the next. The two forecast performance evaluation methods are demonstrated in the pages following the examples of the twelve forecasting methods. A.3 Method 1 - Specified Percent Over Last Year This method multiplies sales data from the previous year by a user specified factor for example, 1.10 for a 10 increase, or 0.97 for a 3 decrease. Required sales history: One year for calculating the forecast plus the user specified number of time periods for evaluating forecast performance (processing option 19). A.4.1 Forecast Calculation Range of sales history to use in calculating growth factor (processing option 2a) 3 in this example. Sum the final three months of 2005: 114 119 137 370 Sum the same three months for the previous year: 123 139 133 395 The calculated factor 370395 0.9367 Calculate the forecasts: January, 2005 sales 128 0.9367 119.8036 or about 120 February, 2005 sales 117 0.9367 109.5939 or about 110 March, 2005 sales 115 0.9367 107.7205 or about 108 A.4.2 Simulated Forecast Calculation Sum the three months of 2005 prior to holdout period (July, Aug, Sept): 129 140 131 400 Sum the same three months for the previous year: 141 128 118 387 The calculated factor 400387 1.033591731 Calculate simulated forecast: October, 2004 sales 123 1.033591731 127.13178 November, 2004 sales 139 1.033591731 143.66925 December, 2004 sales 133 1.033591731 137.4677 A.4.3 Percent of Accuracy Calculation POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Mean Absolute Deviation Calculation MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677)3 12.75624 A.5 Method 3 - Last year to This Year This method copies sales data from the previous year to the next year. Required sales history: One year for calculating the forecast plus the number of time periods specified for evaluating forecast performance (processing option 19). A.6.1 Forecast Calculation Number of periods to be included in the average (processing option 4a) 3 in this example For each month of the forecast, average the previous three months data. January forecast: 114 119 137 370, 370 3 123.333 or 123 February forecast: 119 137 123 379, 379 3 126.333 or 126 March forecast: 137 123 126 379, 386 3 128.667 or 129 A.6.2 Simulated Forecast Calculation October 2005 sales (129 140 131)3 133.3333 November 2005 sales (140 131 114)3 128.3333 December 2005 sales (131 114 119)3 121.3333 A.6.3 Percent of Accuracy Calculation POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Absolute Deviation Calculation MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Method 5 - Linear Approximation Linear Approximation calculates a trend based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution, as long range forecasts are leveraged by small changes in just two data points. Required sales history: The number of periods to include in regression (processing option 5a), plus 1 plus the number of time periods for evaluating forecast performance (processing option 19). A.8.1 Forecast Calculation Number of periods to include in regression (processing option 6a) 3 in this example For each month of the forecast, add the increase or decrease during the specified periods prior to holdout period the previous period. Average of the previous three months (114 119 137)3 123.3333 Summary of the previous three months with weight considered (114 1) (119 2) (137 3) 763 Difference between the values 763 - 123.3333 (1 2 3) 23 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Average - value1 ratio 123.3333 - 11.5 2 100.3333 Forecast (1 n) value1 value2 4 11.5 100.3333 146.333 or 146 Forecast 5 11.5 100.3333 157.8333 or 158 Forecast 6 11.5 100.3333 169.3333 or 169 A.8.2 Simulated Forecast Calculation October 2004 sales: Average of the previous three months (129 140 131)3 133.3333 Summary of the previous three months with weight considered (129 1) (140 2) (131 3) 802 Difference between the values 802 - 133.3333 (1 2 3) 2 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Average - value1 ratio 133.3333 - 1 2 131.3333 Forecast (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 sales Average of the previous three months (140 131 114)3 128.3333 Summary of the previous three months with weight considered (140 1) (131 2) (114 3) 744 Difference between the values 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Forecast 4 -12.9999 154.3333 102.3333 December 2004 sales Average of the previous three months (131 114 119)3 121.3333 Summary of the previous three months with weight considered (131 1) (114 2) (119 3) 716 Difference between the values 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Average - value1 ratio 121.3333 - (-5.9999) 2 133.3333 Forecast 4 (-5.9999) 133.3333 109.3333 A.8.3 Percent of Accuracy Calculation POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Mean Absolute Deviation Calculation MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Method 7 - Second Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a bX with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar. However, this method determines values for a, b, and c in the forecast formula Y a bX cX2 with the objective of fitting a curve to the sales history data. This method may be useful when a product is in the transition between stages of a life cycle. For example, when a new product moves from introduction to growth stages, the sales trend may accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). Therefore, this method is useful only in the short term. Forecast specifications: The formulae finds a, b, and c to fit a curve to exactly three points. You specify n in the processing option 7a, the number of time periods of data to accumulate into each of the three points. In this example n 3. Therefore, actual sales data for April through June are combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve will be fitted to the three values Q1, Q2, and Q3. Required sales history: 3 n periods for calculating the forecast plus the number of time periods required for evaluating the forecast performance (PBF). Number of periods to include (processing option 7a) 3 in this example Use the previous (3 n) months in three-month blocks: Q1(Apr - Jun) 125 122 137 384 Q2(Jul - Sep) 129 140 131 400 Q3(Oct - Dec) 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a bX cX2 (1) Q1 a bX cX2 (where X 1) a b c (2) Q2 a bX cX2 (where X 2) a 2b 4c (3) Q3 a bX cX2 (where X 3) a 3b 9c Solve the three equations simultaneously to find b, a, and c: Subtract equation (1) from equation (2) and solve for b (2) - (1) Q2 - Q1 b 3c Substitute this equation for b into equation (3) (3) Q3 a 3(Q2 - Q1) - 3c c Finally, substitute these equations for a and b into equation (1) Q3 - 3(Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2)2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 - 3(Q2 - Q1) 370 - 3(400 - 384) 322 c (Q3 - Q2) (Q1 - Q2)2 (370 - 400) (384 - 400)2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23)X2 January thru March forecast (X4): (322 340 - 368)3 2943 98 per period April thru June forecast (X5): (322 425 - 575)3 57.333 or 57 per period July thru September forecast (X6): (322 510 - 828)3 1.33 or 1 per period October thru December (X7) (322 595 - 11273 -70 A.9.2 Simulated Forecast Calculation October, November and December, 2004 sales: Q1(Jan - Mar) 360 Q2(Apr - Jun) 384 Q3(Jul - Sep) 400 a 400 - 3(384 - 360) 328 c (400 - 384) (360 - 384)2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percent of Accuracy Calculation POA (136 136 136) (114 119 137) 100 110.27 A.9.4 Mean Absolute Deviation Calculation MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Method 8 - Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a user specified factor, then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. The Flexible Method adds the capability to specify a time period other than the same period last year to use as the basis for the calculations. Multiplication factor. For example, specify 1.15 in the processing option 8b to increase the previous sales history data by 15. Base period. For example, n 3 will cause the first forecast to be based upon sales data in October, 2005. Minimum sales history: The user specified number of periods back to the base period, plus the number of time periods required for evaluating the forecast performance (PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Method 9 - Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, with the Weighted Moving Average you can assign unequal weights to the historical data. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so this makes WMA more responsive to shifts in the level of sales. However, forecast bias and systematic errors still do occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. For example, specify n 3 in the processing option 9a to use the most recent three periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but will be slow to recognize shifts in the level of sales. On the other hand, a small value for n (such as 3) will respond quicker to shifts in the level of sales, but the forecast may fluctuate so widely that production can not respond to the variations. The weight assigned to each of the historical data periods. The assigned weights must total to 1.00. For example, when n 3, assign weights of 0.6, 0.3, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 Method 10 - Linear Smoothing This method is similar to Method 9, Weighted Moving Average (WMA). However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. As is true of all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. This is specified in the processing option 10a. For example, specify n 3 in the processing option 10b to use the most recent three periods as the basis for the projection into the next time period. The system will automatically assign the weights to the historical data that decline linearly and sum to 1.00. For example, when n 3, the system will assign weights of 0.5, 0.3333, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.12.1 Forecast Calculation Number of periods to include in smoothing average (processing option 10a) 3 in this example Ratio for one period prior 3(n2 n)2 3(32 3)2 36 0.5 Ratio for two periods prior 2(n2 n)2 2(32 3)2 26 0.3333.. Ratio for three periods prior 1(n2 n)2 1(32 3)2 16 0.1666.. January forecast: 137 0.5 119 13 114 16 127.16 or 127 February forecast: 127 0.5 137 13 119 16 129 March forecast: 129 0.5 127 13 137 16 129.666 or 130 A.12.2 Simulated Forecast Calculation October 2004 sales 129 16 140 26 131 36 133.6666 November 2004 sales 140 16 131 26 114 36 124 December 2004 sales 131 16 114 26 119 36 119.3333 A.12.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Method 11 - Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing the system assigns weights to the historical data that decline linearly. In exponential smoothing, the system assigns weights that exponentially decay. The exponential smoothing forecasting equation is: Forecast a(Previous Actual Sales) (1 - a) Previous Forecast The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. a is the weight applied to the actual sales for the previous period. (1 - a) is the weight applied to the forecast for the previous period. Valid values for a range from 0 to 1, and usually fall between 0.1 and 0.4. The sum of the weights is 1.00. a (1 - a) 1 You should assign a value for the smoothing constant, a. If you do not assign values for the smoothing constant, the system calculates an assumed value based upon the number of periods of sales history specified in the processing option 11a. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for a range from 0 to 1. n the range of sales history data to include in the calculations. Generally one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 3) was chosen in order to reduce the manual calculations required to verify the results. Exponential smoothing can generate a forecast based on as little as one historical data point. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.13.1 Forecast Calculation Number of periods to include in smoothing average (processing option 11a) 3, and alpha factor (processing option 11b) blank in this example a factor for the oldest sales data 2(11), or 1 when alpha is specified a factor for the 2nd oldest sales data 2(12), or alpha when alpha is specified a factor for the 3rd oldest sales data 2(13), or alpha when alpha is specified a factor for the most recent sales data 2(1n), or alpha when alpha is specified November Sm. Avg. a(October Actual) (1 - a)October Sm. Avg. 1 114 0 0 114 December Sm. Avg. a(November Actual) (1 - a)November Sm. Avg. 23 119 13 114 117.3333 January Forecast a(December Actual) (1 - a)December Sm. Avg. 24 137 24 117.3333 127.16665 or 127 February Forecast January Forecast 127 March Forecast January Forecast 127 A.13.2 Simulated Forecast Calculation July, 2004 Sm. Avg. 22 129 129 August Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136.3333 133.6666 October, 2004 sales Sep Sm. Avg. 133.6666 August, 2004 Sm. Avg. 22 140 140 September Sm. Avg. 23 131 13 140 134 October Sm. Avg. 24 114 24 134 124 November, 2004 sales Sep Sm. Avg. 124 September 2004 Sm. Avg. 22 131 131 October Sm. Avg. 23 114 13 131 119.6666 November Sm. Avg. 24 119 24 119.6666 119.3333 December 2004 sales Sep Sm. Avg. 119.3333 A.13.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Method 12 - Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed averaged adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for alpha range from 0 to 1. b the smoothing constant used in calculating the smoothed average for the trend component of the forecast. Valid values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast a and b are independent of each other. They do not have to add to 1.0. Minimum required sales history: two years plus the number of time periods required for evaluating the forecast performance (PBF). Method 12 uses two exponential smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal factor. A.14.1 Forecast Calculation A) An exponentially smoothed average MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Evaluating the Forecasts You can select forecasting methods to generate as many as twelve forecasts for each product. Each forecasting method will probably create a slightly different projection. When thousands of products are forecast, it is impractical to make a subjective decision regarding which of the forecasts to use in your plans for each of the products. The system automatically evaluates performance for each of the forecasting methods that you select, and for each of the products forecast. You can choose between two performance criteria, Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a user specified period of time. This period of recent history is called a holdout period or periods best fit (PBF). To measure the performance of a forecasting method, use the forecast formulae to simulate a forecast for the historical holdout period. There will usually be differences between actual sales data and the simulated forecast for the holdout period. When multiple forecast methods are selected, this same process occurs for each method. Multiple forecasts are calculated for the holdout period, and compared to the known sales history for that same period of time. The forecasting method producing the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in your plans. This recommendation is specific to each product, and might change from one forecast generation to the next. A.16 Mean Absolute Deviation (MAD) MAD is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD has shown to be the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, there is a simple mathematical relationship between MAD and two other common measures of distribution, standard deviation and Mean Squared Error: A.16.1 Percent of Accuracy (POA) Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently two low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high, would be an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. Error Actual - Forecast When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, it is not so important to eliminate forecast errors as it is to generate unbiased forecasts. However in service industries, the above situation would be viewed as three errors. The service would be understaffed in the first period, then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. The summation over the holdout period allows positive errors to cancel negative errors. When the total of actual sales exceeds the total of forecast sales, the ratio is greater than 100. Of course, it is impossible to be more than 100 accurate. When a forecast is unbiased, the POA ratio will be 100. Therefore, it is more desirable to be 95 accurate than to be 110 accurate. The POA criteria select the forecasting method that has a POA ratio closest to 100. Scripting on this page enhances content navigation, but does not change the content in any way. How to calculate Mean Absolute Deviation (MAD) Help please. Since May of 2005, the purchase manager at a department store has been using a 4-period moving average to forecast sales in upcoming months. Sales data for the months of January through July are given in the table. show more Since May of 2005, the purchase manager at a department store has been using a 4-period moving average to forecast sales in upcoming months. Sales data for the months of January through July are given in the table below. Compute the mean absolute deviation (MAD) for the four-period moving average forecasts. The forecast values are calculated with an accuracy of two decimal digits. Specify the MAD as a whole number by rounding.
No comments:
Post a Comment